Решение контрольной работы № 6 «Равносильность уравнений и неравенств на множествах» Вариант 1

1)
$$\sqrt{x-6} = x-7$$

$$\begin{cases} (\sqrt{x-6})^2 = (x-7)^2 & x-6 = x^2-14x+49 \\ x-7 \ge 0 & x \ge 7 \end{cases}$$
 решаем уравнение: $x-6=x^2-14x+49$
$$x^2-15x+55=0; \ D=225-220=5>0$$

$$x_1=\frac{15-\sqrt{5}}{2}=7,5-0,5\sqrt{5} \ \text{ не подходит, так как } 7,5-0,5\sqrt{5}<7$$

$$x_2=\frac{15+\sqrt{5}}{2}=7,5+0,5\sqrt{5} \ \text{ подходит, так как } 7,5+0,5\sqrt{5}>7$$

Ответ: 7,5 + 0,5
$$\sqrt{5}$$
.

2)
$$\lg(x^3 - 5x^2 + 6x + 7) = \lg(x^3 - 4x^2 + 7x + 1)$$
 $x^3 - 5x^2 + 6x + 7 = x^3 - 4x^2 + 7x + 1$
 $- 5x^2 + 6x + 7 = -4x^2 + 7x + 1$
 $- 5x^2 + 6x + 7 + 4x^2 - 7x - 1 = 0$
 $- x^2 - x + 6 = 0$ $D = 1 + 24 = 25 > 0$
 $x_1 = \frac{1 - 5}{-2} = \frac{-4}{-2} = 2$ $x_1 = \frac{1 + 5}{-2} = \frac{6}{-2} = -3$
проверка: $\lg(2^3 - 5 \cdot 2^2 + 6 \cdot 2 + 7) = \lg(2^3 - 4 \cdot 2^2 + 7 \cdot 2 + 1)$
 $\lg(8 - 20 + 12 + 7) = \lg(8 - 16 + 14 + 1)$
 $\lg 7 = \lg 7$

корень 2 является решением уравнения;

$$\lg((-3)^3 - 5 \cdot (-3)^2 + 6 \cdot (-3) + 7) = \lg(-27 - 45 - 18 + 7) =$$
 = $\lg(-83)$ – выражение не имеет смысла, поэтому корень – 3 не является решением уравнения;

Ответ: 2.

3)
$$(x^2-5x-14)\cdot\sqrt{x-6}=0$$
 $x^2-5x-14=0$ $\sqrt{x-6}=0$ корень -2 не подходит, так как $\sqrt{-2-6}=\sqrt{-8}$; $-8<0$ Ответ: 6 и 7.

4)
$$\frac{\sin 2\pi x}{4x-1} = \frac{1}{4x-1}$$

$$\begin{cases} \sin 2\pi x = 1 \\ 4x - 1 \neq 0 \end{cases} \begin{cases} 2\pi x = \frac{\pi}{2} + \pi n \\ 4x \neq 1 \end{cases} \begin{cases} x = \frac{1}{4} + n, n \in \mathbb{Z} \\ x \neq \frac{1}{4} \end{cases}$$

решением уравнения будут все числа вида $x = \frac{1}{4} + n, n \neq 0, n \in Z$;

Ответ:
$$\frac{1}{4}$$
 + n , $n \neq 0$, $n \in Z$.

 $\sqrt{3x-2} \le x$ неравенство равносильно системе неравенств: 5)

$$\begin{cases} (\sqrt{3x-2})^2 \le (x)^2 \\ 3x-2 \ge 0 \\ x \ge 0 \end{cases} \qquad \begin{cases} 3x-2 \le x^2 \\ 3x \ge 2 \\ x \ge 0 \end{cases}$$

решаем первое неравенство системы: $3x - 2 \le x^2$

$$-x^2 + 3x - 2 \le 0$$

 $x^2 - 3x + 2 \ge 0$, корни трёхчлена 1 и 2

применяем метод интервалов

решаем второе неравенство системы: $x \ge \frac{2}{3}$, таким образом:

$$\begin{cases} -x^2 + 3x - 2 \le 0 \\ x \ge \frac{2}{3} \end{cases}$$

0
$$\frac{2}{3}$$
 $[\frac{2}{3}; 1] \cup [2; + ∞)$
Οτβετ: $[\frac{2}{3}; 1] \cup [2; + ∞)$.

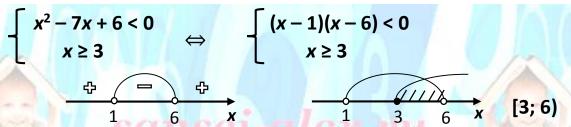
$$[\frac{2}{3};1]\cup[2;+\infty)$$

Ответ:
$$[\frac{2}{3}; 1] \cup [2; + ∞).$$

 $\sqrt{x+3} > x-3$ множество решений данного неравенства будет объединение множеств решений двух систем:

$$\begin{cases} (\sqrt{x+3})^2 > (x-3)^2 & \text{if } x+3 \ge 0 \\ x-3 < 0 & \text{if } x+3 > x^2 - 6x + 9 & \text{if } x \ge -3 \\ x \ge 3 & \text{if } x < 3 \end{cases}$$

$$\begin{cases} -x^2 + 7x - 6 > 0 & \text{if } x \ge -3 \\ x \ge 3 & \text{if } x \ge 3 \end{cases}$$



таким образом решением исходного неравенства будет являться объединение промежутков [− 3; 3)∪[3; 6) = [− 3; 6)

7)
$$2^{3x+7} + \sqrt{3x+7} = 2^{x^2-11} + \sqrt{x^2-11}$$

областью существования функции $f(u) = 2^u + \sqrt{u}$ будет являться промежуток $[0; + \infty)$; а так же учитывая, что функция возрастает на данном промежутке(как сумма возрастающих функций), составляем систему:

$$\begin{cases} 3x + 7 = x^2 - 11 \\ 3x + 7 \ge 0 \\ x^2 - 11 \ge 0 \end{cases}$$

решаем уравнение системы $3x + 7 = x^2 - 11$

$$x^2 - 3x - 18 = 0$$
, $x^2 - 3x - 18 = 0$, $x^2 - 3x - 18 = 0$

решаем неравенство $3x + 7 \ge 0$, откуда $x \ge -2\frac{1}{3}$

решаем неравенство $x^2 - 11 \ge 0$; $x^2 \ge 11$, откуда $x \le -\sqrt{11}$ и $x \ge \sqrt{11}$

$$\sqrt{-\sqrt{11}}$$
 $-2\frac{1}{3}$ $\sqrt{11}$ x [$\sqrt{11}$; + ∞), подходит только корень 6;

Ответ: 6. **Se1-alex**